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Abstract
A reactive system under the influence of a turbulent flow leads to a diversity
of kinetic regimes that result from the interplay between reaction, advection
and drag forces. Inertial bias collects reactants preferentially in certain regions
of the flow depending on their density, and this fact strongly determines the
overall kinetic behaviour and the spatial organization of the reactive mixture.
We present a Eulerian scheme for the advection terms in a kinetic mean-
field model that is better suited to the study of nonpassively advected reactive
systems than the original Lagrangian approach. We show two examples of these
systems: first, a formal study of the typical binary diffusion-controlled reaction
A + B → 0, when the reactants are nonpassively advected; second, application
to the study of plankton dynamics in the ocean that reproduces the well-known
periodically sustained plankton blooms.

1. Introduction

Advection of particles by turbulent flows can be considered as one of the most interesting
problems in fluid mechanics, and a basic issue in environmental and engineering fields. The
mixing efficiency of such flows has been an object of study for years and the idea that turbulence
is a good mixing mechanism is today inconsistent with experimental observations that show the
existence of particle aggregation patterns even in the strongest turbulent flows. This is related to
the fact that turbulent flows are clearly characterized by structure and underlying coherence [1].
This aggregation phenomenon is even more dramatic when considering nonpassively advected
particles. In this case, particles do not follow the flow lines of the fluid exactly, and therefore,
even under incompressible flow, an initially homogenized condition segregates and particles
tend to accumulate in certain regions of the advecting field [2].

Patterning due to the motion of nonpassive particles in a turbulent fluid is crucial for
the understanding of a large variety of problems like the settling of aerosol particles [3, 4],
the dispersion of pollutants in the atmosphere, the distribution of planktonic organisms in the
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ocean [5], etc. More specifically, when advected particles are involved in a reactive process,
the induced structural organization and the reactive kinetics are strongly connected and may
lead to nontrivial or complex behaviours. As a formal example, let us consider the reaction
A + B → 0 [6, 7]. When diffusion is not an efficient mixing mechanism (for instance in low
dimensions), initial inhomogeneous fluctuations evolve, giving rise to clusters (of either A or
B) that grow with time [8, 9] and, since the reaction only takes place at the cluster’s boundaries,
the rate law is slower than the classical one. Passive turbulent mixing procedures are known
to restore for a while the classical (fast) kinetic regime [10, 11]. However, when nonpassive
advection is considered, induced reactant aggregation may result in a large variety of kinetic
behaviours that spans from classical kinetics to complete reaction stoppage [12].

Another example of the influence of nonpassive turbulence can be found in the study of
planktonic dynamics in the ocean. All oceanic organisms experience advection by turbulence
which can cause inhomogeneous spatial distributions. More specifically, phytoplankton and
zooplankton have different viscous and inertial properties, so that they may accumulate in
separate areas of the flow [13]. Phytoplankton–zooplankton interactions can be treated like
prey–predator dynamics through an elementary excitable reactive scheme. A simple model [14]
demonstrates that the interplay between differential flow effects of the planktonic species and
the excitable reaction dynamics may reproduce the observed oceanic phytoplankton blooms
and patchiness.

Lots of numerical and analytical approaches have been devoted to the study of the motion
of particles in turbulent flow fields. In this paper, we revisit this problem using as an advection
field a synthetic, two-dimensional turbulent flow with some prescribed statistical properties.
In section 2.1 we present the flow and a brief introduction to the procedure through which
we generate it. Although the most visual approach to studying particle advection is by means
of a Lagrangian prescription, we rather prefer to use an Eulerian model for the inertial terms
compatible with the continuum prescription mostly used to study reaction–diffusion problems.
This approach is presented and numerically tested in section 2.2. The rest of the paper is
devoted to reviewing the main results obtained by application of the Eulerian prescription to
the two aforementioned problems. On the one hand, in section 3 we revisit the diffusion–
reaction–advection problem for nonpassively advected reactants, and a detailed study of the
kinetic regimes is presented for the A + B → 0 reaction. On the other hand, the main results of
our research on planktonic dynamics are presented in section 4. Finally, section 5 summarizes
our findings and conclusions.

2. Numerical methods

2.1. Synthetic turbulent velocity flow

To mimic turbulent mixing conditions, we generate a statistically homogeneous, isotropic and
stationary two-dimensional velocity field, U(x, y), as first proposed in [15]. This represents a
‘synthetic’ turbulent flow with some prescribed statistical properties; u2

0 denotes its intensity,
and l0 and t0 its length and time correlation, respectively. These kinematic characteristics are
expressed in terms of the velocity correlation function, which in turn depends on the form of the
energy spectrum. For the flow used in our research we have adopted Kraichnan’s spectrum [16],
as it describes a turbulent flow that incorporates a wide band of excited modes, but whose
energy drops off sharply for large wavenumbers.

A detailed presentation of the algorithm can be found in [15]. The whole procedure is
discretized (Ui, j ) in space using a square lattice of N × N points and unit spacing �x , so that
the linear size of the system is L = N�x . For the sake of simplicity, and in order to avoid
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Figure 1. Left: turbulent velocity field, Ui, j , with u2
0 = 1 and l0 = 6 used in some of the simulations

in this paper. Middle and right: concentration plots at t = 180 for D = 0.25 and A = 6 for the
velocity flow in the left panel. The middle panel corresponds to heavy particles (β = 0) and the
right panel to light particles (β = 2).

the existence of a great number of temporal scales, we consider a frozen flow, so we have fixed
t0 = ∞ in our flow simulations. In the left panel of figure 1 we show an example of the velocity
field obtained by the algorithm presented.

2.2. Eulerian scheme

Since our main interest on what follows consists of incorporating reaction effects affecting
dispersed particles, we use a continuum scheme of particle concentrations instead of the more
visual particle description. The inclusion of reactive terms is rather easy to implement in terms
of advection–diffusion–reaction equations for particle concentrations. For a single component
system,

∂c(r, t)

∂ t
= −∇ · v(r, t)c(r, t) + D∇2c(r, t), (1)

where c(r, t) corresponds to the local concentration, D the diffusion constant, and v(r, t) the
velocity of the particles at the position r at time t . This velocity is related to the fluid velocity
field as [17]

∂v(r, t)

∂ t
= α(U(r) − v(r, t)) − (v(r, t) ·∇) v(r, t) + β(U(r) ·∇)U(r). (2)

Here, α = Al0/u0 is the dimensionless version of the inertia parameter, and A =
(12πaμ)/(2m p + mf) sets the balance between viscous and inertial forces. The Bernouilli
parameter β = 3mf/(2m p + mf) introduces the ratio between m p, the particle mass, and mf

the mass of the volume of fluid displaced by the particle, μ is the dynamic viscosity associated
with the surrounding fluid, and a is the radius of the particle. We have rescaled space, time
and velocity by the scale factors l0, l0/u0 and u0. We have to be aware of the limitations of
equation (2), since it implicitly assumes the existence of a particle velocity field; namely, that
the velocity of a particle is determined only by its position. This is guaranteed by assuming
that the viscous term dominates the inertial forces (α � 1) in such a way that the history
(trajectory) of the particle is not necessary to know its actual velocity. This is only valid under
the conditions used in the asymptotical approach developed in [17] and references therein.

To check numerically the validity of this field prescription, we discretize and solve
equations (1) and (2). Discretization of an advection term is technically rather complicated,
especially in systems leading to aggregation, since high concentration gradients appear.
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After comparing different explicit methods, we finally choose the two-step Lax–Wendroff
scheme [18], with a time step �t = 0.0002 which gives us good numerical accuracy. We start
from a random initial distribution of local concentrations, and periodic boundary conditions
apply. The middle and right panels of figure 1 show the concentration distributions for heavy
particles (middle) and light particles (right) for a given diffusion constant D = 0.25. Grey
scales have been used here: black for the higher concentrations and white for the smaller. The
results obtained from this scheme show the same aggregation behaviour as from Lagrangian
simulations [17]; namely, heavy particles (β < 1) accumulate in regions with low vorticity and
high strain rate, whereas light particles (β > 1) collect in zones with high vorticity and low
strain rate.

3. A + B → 0 reactive system

We now address one of the two examples of interest in this paper: the diffusion–advection
problem of two species reacting according to A + B → 0. Our starting points are mean-field
reaction–diffusion–advection equations:

∂cA(r, t)

∂ t
= −∇ · vA(r, t)cA(r, t) + D∇2cA(r, t) − kcA(r, t)cB(r, t)

∂cB(r, t)

∂ t
= −∇ · vB(r, t)cB(r, t) + D∇2cB(r, t) − kcA(r, t)cB (r, t).

(3)

The numerical discretization of equations (3) and (2) follows the same prescription as in
section 2.2. A random and stoichiometric distribution for the initial local concentrations is
chosen (〈cA〉 = 〈cB〉 = 〈c〉 = 1). Since we want to keep ourselves to a diffusion-controlled
situation, we usually take small values for the diffusion coefficient (D = 0.1) and a much larger
value for the reaction constant (k = 2).

The case without advection shows the typical asymptotic diffusion-limited kinetics, c ∼
t−1/2 (for two-dimensional systems). When including passive advection (vA(r, t) = vB(r, t) =
U(r)) the system first enters a mixing-aided regime where the classical kinetics c ∼ t−1 is
transiently restored. The length scale of this regime is dictated by the correlation length of
the flow. When the diffusion length becomes larger, the system crosses over to a diffusion-
controlled regime t−1/2, where the anomalous kinetics shows up again [10, 11]. In figure 2
these two behaviours are readly recognized as reference cases to be used later on.

The effect of nonpassive advection on the reaction kinetics, assuming large and equal
values of α, depends on the densities of the reactant species (βi ). Here, two extreme scenarios
are presented, depending on whether both species have the same density or strongly different
densities. Intermediate cases are believed to not show any different qualitative behaviour.

When both species have the same density we generally observe an enlargement of the
classical c ∼ t−1 law in relation to the passively advected cases. This effect is already shown
for very light particles (βA = βB = 2) but it is far more evident for very heavy particles
(βA = βB = 0). Obviously, this effect is reduced when the densities of the two species
approach that of the fluid (βi → 1). We define an effective reaction rate keff during the inertia-
induced classical stage of the reaction from a fit to c−1 = a0 + kefft . Generally, the values of
keff are closer to k when the reactants are nonpassively advected, especially if both species are
lighter than the fluid. For instance, for the cases plotted in figure 2 where k = 2, keff = 0.737
for the passively advected case, keff = 1.356 for the case of heavy particles and keff = 1.421
for the case of light particles.

In spite of the fact that nonpassive advection effects first enhance the reactive process, at
longer times the system becomes strongly segregated (see figure 3) and a very slow decay is
found (actually the reaction is almost halted). This effect is more dramatic and shows up earlier
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Figure 2. Log–log plot for the temporal evolution of 〈c〉 for different binary reacting systems
analysed in this paper. k = 2 and D = 0.1 in all cases. For the systems with advection, we have
u2

0 = 1 and l0 = 6. For the cases with inertia, α = 6. Slopes −1 and −1/2 are plotted to help to
identify the different kinetic regimes.

Figure 3. Concentration plots for the species A (left) and B (right) at t = 25 (top) and 500 (bottom)
in a nonpassively advected system. The bottom plots are chosen to correspond to times when the
reaction has already been halted due to the segregation of reactants. The first panel corresponds to
the case where both species are heavier than the fluid (βA = βB = 0). The second panel stands for
the case where both species are lighter than the fluid (βA = βB = 2). We use the same flow as in
figure 4.

for light particles than for heavy ones. In any case, no purely diffusion-controlled regime is
found whatsoever, since the diffusive (mixing) process is counterbalanced by the inertial drift
that keeps the reactants segregated once the system enters such a slow regime. This is the first
important conclusion to emphasize: stated in short and differently to the passively advected
case, the transient regime of classical kinetics leads directly to a no-reaction stage, whereas the
standard t−1/2 behaviour is never observed.
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Figure 4. Concentration plots for the species A (left) and B (right) at t = 25 (top) and 500 (bottom)
in a nonpassively advected system. One species is heavier than the fluid (βA = 0) and the other one
is lighter (βB = 2). We use the same flow realization as in figure 3.

Before going ahead, it is worth presenting here some quantitative details of the spatial mass
distribution following the reaction–diffusion–advection effects described previously. Although
for the heavy reactants case the full system average concentration is quite small at t = 500
(the maximum time shown for our simulations), 〈c〉 = 10−4, half of the remaining mass is
accumulated only in 10% of the system. Moreover, in some aggregation regions, the mean
local concentration can be ten times larger than the whole concentration average. This effect
is even more pronounced for light reactants: for a similar tiny average concentration, half
of the remaining mass at t = 500 is concentrated in 2.5% of the system, and one can find
regions inside the eddies where the local concentration exceeds one hundred times the whole
concentration average.

Finally, for reactants with differential densities the accumulation in different regions due
to an inertial drift in opposite directions effectively separates both reactants from the very
beginning. Consequently, the kinetic decay is strongly slowed down already at very early times.
The decay curve for this case is also plotted in figure 2, and the corresponding concentration
evolution is shown in figure 4 for the same realization of the flow as in figure 3. The decay
law in this case follows the classical t−1 behaviour but very prematurely; even well before
consuming most of the reactants, it is completely stopped.

4. Plankton dynamics

Plankton patchiness has been observed on a wide range of spatial and temporal
scales [13, 19, 20] and has been attributed to a range of physical and biological mechanisms.
It is important to understand both the mechanisms that result in patchiness and the effect of
patchiness on food–web interactions, which can have a major impact on fisheries policy [21].
Moreover, at moderate spatial scales, phytoplankton ‘blooms’ can occur, whereby the
population of phytoplankton rapidly increases in number and remains at this level for some
period of time before returning to normal. This is the hallmark of an excitable system. Truscott
and Brindley investigated a two-component phytoplankton–zooplankton (PZ) model which has
the characteristics of an excitable system whose excitability is robust over a realistic parameter
range [22].
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In our study of planktonic dynamics we have conjectured that the differential flow of
phytoplankton and zooplankton is sufficient to seed a bloom [14]. This scenario requires
no extraneous perturbation to drive the excitation. In other words, after sufficient inertial
separation a large population of phytoplankton might be allowed to grow in certain localized
regions with minimal predation and this, coupled with dispersive effects, may constitute the
supra-threshold perturbation necessary for an excitable system.

To model plankton dynamics we use a Holling type III grazing by zooplankton and a linear
higher-predatory response with regard to the zooplankton mortality [22]:

IP (P, Z) = r P

(
1 − P

K

)
− γ Z P2

P2 + κ2
,

IZ (P, Z) = eγ Z P2

P2 + κ2
− δZ ,

(4)

where P and Z are the phytoplankton and zooplankton concentrations, respectively.
We further couple the above rate laws to an advection–diffusion scheme. We

nondimensionalize the resulting equations such that P = K p, Z = K z, x = l0x̃, y = l0 ỹ, t =
τ l0/u0, Vi = u0vi , and di = Di/(u0l0), with Vi obtained from equation (2) with appropriate
choices of β = βp and βz , and Di representing turbulent diffusivities (assumed to be equal; see
below). After dropping the tildes, this gives us the following nondimensional scheme:

∂p

∂τ
= −∇ · (vp p − dp∇p) + ωp(1 − p) − γ̄ zp2

p2 + χ2
,

∂z

∂τ
= −∇ · (vz z − dz∇z) + ε

(
γ̄ zp2

p2 + χ2
− σ z

)
,

(5)

where the dimensionless parameters of the excitable model are defined to be ω = rl0/u0, ε =
e, χ = κ/K , σ = δl0/(εu0) and γ̄ = γ l0/u0.

In order to obtain results on the correct length and time scales, we select our model
parameters to be as realistic as possible. We choose L, the simulation box size, to be 50 km
(where l0 is related to L in the sense that l0 determines the scale of the eddies, and in this case
we choose L ≈ 10 l0; see figure 1) and the characteristic velocity to be u0 = 0.1 m s−1, similar
to that used in [13, 23]. From [22], we take ω = 0.162, χ = 0.053, σ = 0.130 and ε = 0.05
(hence, the zooplankton population is the slow/recovery variable). Our choices of l0 and u0

are such that we can realistically fix γ̄ = 1 and, hence, the reaction effects are comparable
to advective effects. In line with a realistic range of values for the inertial parameters [5]
we assume, henceforth, that A = 0.0257 s−1, which means that the zooplankton radius is
approximately 1 cm and implies that α � 1, justifying the preceding asymptotic analysis.

Kraichnan’s spectrum used in our synthetic turbulent flow has a maximum occurring at
k = 0.75 and drops to a very small value at k = 2. Hence, the length scale associated with the
highest energy is equal to 2π/0.75 = 8.4, or about a tenth of the length of the simulation region.
The length scale associated with a wavenumber of 2 (residual energy) is given by π , or about
one 20th of the simulation region. If the simulation region is 50 km, then the dimensional length
scale associated with low spectral energy is L/20 = 2.5 × 105 cm. This is the length scale
for which we wish to implement a turbulent diffusivity in the reaction–advection–diffusion
system. Hence, the diffusivity D = 0.01 ∗ l1.15 = 1.6 × 104 cm2 s−1 = 1.6 m2 s−1

(according to the empirical relationship extracted by Okubo from experimental data [24]). For
the numerical resolution of equations (2) and (5) we follow the same discretization procedure
and numerical scheme presented in the previous sections. We begin from a homogeneous initial
distribution of both species in their unexcited, equilibrium concentration values p∗ = 0.038 27
and z∗ = 0.046 03.
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Figure 5. Oscillatory bloom in the mean concentrations of phytoplankton and zooplankton.

Figure 6. Snapshots of the phytoplankton (top) and zooplankton (bottom) distribution during the
oscillatory bloom. For snapshots of phytoplankton, white refers to p = 0, and for p greater than or
equal to 0.6 black is used. For zooplankton, white refers to z = 0 and black implies that z is greater
than or equal to 0.1.

The most interesting cases occurs for the regime where we have neutrally buoyant
phytoplankton (βp = 1) and slightly heavy zooplankton (βz = 0.9). Here, we indeed see the
emergence of an oscillatory bloom in the average phytoplankton population with a period of
around 210 days. Figure 5 presents the nature of the oscillatory bloom in the mean population
values of phytoplankton and zooplankton, whereas in figure 6 one may observe the spatial
evolution of the distribution of the phytoplankton population during one bloom cycle. What
is fascinating is that this regime is the most physically realistic scenario, as phytoplankton are
usually close to neutrally buoyant and zooplankton are slightly more dense than the surrounding
ocean [5, 20].
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A detailed observation of the planktonic dynamics reveals the inertial-induced mechanism
leading to an oscillatory behaviour [14]. The initial excitation is due to the inertial drift
of zooplankton that move out from the eddies, initiating a phytoplankton bloom inside the
vortices. At this initial stage, the phytoplankton population increases and spreads (diffuses)
inside the vortices unoccupied by zooplankton, which in turn decreases in the whole system
due to the lack of prey. Later on, the zooplankton starts to grow due to the presence of large
quantities of phytoplankton, especially in the straining regions of the flow around the eddies
where the phytoplankton had accumulated previously. At this stage, the zooplankton population
penetrates (via growth and diffusion) into the eddies due to the large localized concentration
of phytoplankton, counteracting the effects of inertial drift. After some time, phytoplankton
is reduced to small concentrations in the centre of the vortical structures, so the zooplankton
population begins to decay due to the lack of prey and move out from the eddies, reaching the
initial state and completing the oscillation.

5. Conclusions

In this paper the problem of inertial reactants advected by turbulence has been studied. We
apply the Eulerian prescription to our model to characterize the presence of an aggregation
behaviour for heavy and light particles. Heavy particles escape from the flow eddies and
circulate following thin paths between them. In contrast, light particles are attracted by the
regions of turbulence with high vorticity and remain accumulated inside the vortical structures
of the flow.

We consider two reactive scenarios where the inertial effects of the advected reactants
strongly determine the kinetic response. First, the diffusion-controlled A + B → 0 reaction,
where we have distinguished two different situations. When the two reactants have the same
density (either larger or smaller than the density of the fluid) the aggregation zones are common
to both species, and thus the mixing efficiency of the flow is temporary increased. After some
time, segregation also takes place inside the common aggregation regions, and the kinetic
decay slows down dramatically. In contrast, when the two reactants have different densities
(one above and the other below the fluid density), the accumulation areas for one and the other
species are different as well, so the reaction is almost halted from an early time. The connection
between the fast and slow kinetic regimes and the spatial patterning of the system has been also
presented.

Finally, we have demonstrated how differential flow effects of planktonic species
(phytoplankton and zooplankton), coupled with excitable reaction dynamics, may contribute
towards oceanic phytoplankton blooms and patchiness. Of particular interest is the oscillatory
excitation, which occurs in the most realistic inertial regime (neutrally buoyant phytoplankton
and slightly heavy zooplankton). The important message in this work is that, with a minimal
model and using experimentally determined values for the parameters, we obtain a natural
period just less than one year, which may be further synchronized by external forcing
(variations of temperature, light, nutrients, etc). This self-initiating, periodic patch forming
mechanism differs from other related work on advection enhanced blooms [23] as it requires
no initial perturbation and is self-sustaining.
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